Recent Publications: (last 3 years)

Total papers: 1379 (last updated 2023-05-23)
Total citations: 47822
H-index: 163

Publications via ADS Library.

  1. Sengar, Bailes, Balakrishnan et al., 2023, Discovery of 37 new pulsars through GPU-accelerated reprocessing of archival data of the Parkes multibeam pulsar survey, Monthly Notices of the Royal Astronomical Society, 522, 1071, arXiv:2302.00255, DOI: 10.1093/mnras/stad508
  2. Anumarlapudi, Swiggum, Kaplan, and Fichtenbauer, 2023, A Pilot Study of Nulling in 22 Pulsars Using Mixture Modeling, The Astrophysical Journal, 948, 32, arXiv:2301.13258, DOI: 10.3847/1538-4357/acbb68
  3. Ray, Magaña Hernandez, Mohite, Creighton, and Kapadia, 2023, Non-parametric inference of the population of compact binaries from gravitational wave observations using binned Gaussian processes, arXiv e-prints, arXiv:2304.08046, arXiv:2304.08046, DOI: 10.48550/arXiv.2304.08046
  4. Baral, Morisaki, Magaña Hernandez, and Creighton, 2023, Localization of binary neutron star mergers with a single Cosmic Explorer, arXiv e-prints, arXiv:2304.09889, arXiv:2304.09889, DOI: 10.48550/arXiv.2304.09889
  5. Srivastava, Desai, Kolhe et al., 2023, Noise analysis in the Indian Pulsar Timing Array Data Release I, arXiv e-prints, arXiv:2303.12105, arXiv:2303.12105, DOI: 10.48550/arXiv.2303.12105
  6. Ding, Deller, Stappers et al., 2023, The MSPSRπ catalogue: VLBA astrometry of 18 millisecond pulsars, Monthly Notices of the Royal Astronomical Society, 519, 4982, arXiv:2212.06351, DOI: 10.1093/mnras/stac3725
  7. Gulati, Murphy, Kaplan et al., 2023, Classical Novae in the ASKAP Pilot Surveys, arXiv e-prints, arXiv:2303.17759, arXiv:2303.17759, DOI: 10.48550/arXiv.2303.17759
  8. Freedman, Johnson, van Haasteren, and Vigeland, 2023, Efficient gravitational wave searches with pulsar timing arrays using Hamiltonian Monte Carlo, Physical Review D, 107, 043013, arXiv:2211.01401, DOI: 10.1103/PhysRevD.107.043013
  9. Ray, Camilo, Creighton, Ghosh, and Morisaki, 2023, Rapid hierarchical inference of neutron star equation of state from multiple gravitational wave observations of binary neutron star coalescences, Physical Review D, 107, 043035, arXiv:2211.06435, DOI: 10.1103/PhysRevD.107.043035
  10. Abbott, Abe, Acernese et al., 2022, Model-based Cross-correlation Search for Gravitational Waves from the Low-mass X-Ray Binary Scorpius X-1 in LIGO O3 Data, The Astrophysical Journal, 941, L30, arXiv:2209.02863, DOI: 10.3847/2041-8213/aca1b0
  11. Gair, Ghosh, Gray et al., 2022, The Hitchhiker's guide to the galaxy catalog approach for gravitational wave cosmology, arXiv e-prints, arXiv:2212.08694, arXiv:2212.08694, DOI: 10.48550/arXiv.2212.08694
  12. Anusree, Bhattacharya, Bhalerao, and Anumarlapudi, 2022, Pulsars in AstroSat-CZTI: detection in sub-MeV bands and estimation of spectral index from hardness ratios, Journal of Astrophysics and Astronomy, 43, 91, arXiv:2207.12758, DOI: 10.1007/s12036-022-09886-9
  13. Andreoni, Coughlin, Perley et al., 2022, A very luminous jet from the disruption of a star by a massive black hole, Nature, 612, 430, arXiv:2211.16530, DOI: 10.1038/s41586-022-05465-8
  14. Abbott, Abe, Acernese et al., 2022, All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data, Physical Review D, 106, 102008, arXiv:2201.00697, DOI: 10.1103/PhysRevD.106.102008
  15. McGrath, D'Orazio, and Creighton, 2022, Measuring the Hubble constant with double gravitational wave sources in pulsar timing, Monthly Notices of the Royal Astronomical Society, 517, 1242, arXiv:2208.06495, DOI: 10.1093/mnras/stac2593
  16. Norris, Marvil, Collier et al., 2022, The Evolutionary Map of the Universe Pilot Survey - ADDENDUM, Publications of the Astronomical Society of Australia, 39, e055, DOI: 10.1017/pasa.2022.48
  17. Wang, Murphy, Kaplan et al., 2022, A pilot ASKAP survey for radio transients towards the Galactic Centre, Monthly Notices of the Royal Astronomical Society, 516, 5972, arXiv:2209.02352, DOI: 10.1093/mnras/stac2542
  18. Adhikari and Morisaki, 2022, Accelerating gravitational-wave parametrized tests of general relativity using a multiband decomposition of likelihood, Physical Review D, 106, 104053, arXiv:2208.03731, DOI: 10.1103/PhysRevD.106.104053
  19. James, Berg, King et al., 2022, CLASSY. II. A Technical Overview of the COS Legacy Archive Spectroscopic Survey, The Astrophysical Journal Supplement Series, 262, 37, arXiv:2206.01224, DOI: 10.3847/1538-4365/ac8008
  20. Olivier, Berg, Chisholm et al., 2022, Characterizing Extreme Emission Line Galaxies. II. A Self-consistent Model of Their Ionizing Spectrum, The Astrophysical Journal, 938, 16, arXiv:2109.06725, DOI: 10.3847/1538-4357/ac8f2c
  21. The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration et al., 2022, Search for gravitational-wave transients associated with magnetar bursts in Advanced LIGO and Advanced Virgo data from the third observing run, arXiv e-prints, arXiv:2210.10931, arXiv:2210.10931, DOI: 10.48550/arXiv.2210.10931
  22. Kaiser, Pol, McLaughlin et al., 2022, Disentangling Multiple Stochastic Gravitational Wave Background Sources in PTA Data Sets, The Astrophysical Journal, 938, 115, arXiv:2208.02307, DOI: 10.3847/1538-4357/ac86cc
  23. Erb, Li, Steidel et al., 2022, The Circumgalactic Medium of Extreme Emission Line Galaxies at z ~ 2: Resolved Spectroscopy and Radiative Transfer Modeling of Spatially Extended Lyman-alpha Emission in the KBSS-KCWI Survey, arXiv e-prints, arXiv:2210.02465, arXiv:2210.02465, DOI: 10.48550/arXiv.2210.02465
  24. Wofford, Yelikar, Gallagher et al., 2022, Expanding RIFT: Improving performance for GW parameter inference, arXiv e-prints, arXiv:2210.07912, arXiv:2210.07912, DOI: 10.48550/arXiv.2210.07912
  25. Hanna, Joshi, Huxford et al., 2022, Metric assisted stochastic sampling search for gravitational waves from binary black hole mergers, Physical Review D, 106, 084033, arXiv:2110.15463, DOI: 10.1103/PhysRevD.106.084033
  26. Rigney, Ramsay, Carley et al., 2022, Searching for stellar flares from low-mass stars using ASKAP and TESS, Monthly Notices of the Royal Astronomical Society, 516, 540, arXiv:2207.00405, DOI: 10.1093/mnras/stac2143
  27. Tarafdar, Nobleson, Rana et al., 2022, The Indian Pulsar Timing Array: First data release, Publications of the Astronomical Society of Australia, 39, e053, arXiv:2206.09289, DOI: 10.1017/pasa.2022.46
  28. Hanna, Kennington, Sakon et al., 2022, A binary tree approach to template placement for searches for gravitational waves from compact binary mergers, arXiv e-prints, arXiv:2209.11298, arXiv:2209.11298, DOI: 10.48550/arXiv.2209.11298
  29. Spaulding and Chang, 2022, Radio emission from simulated tidal disruption events, Monthly Notices of the Royal Astronomical Society, 515, 1699, DOI: 10.1093/mnras/stac1886
  30. Abbott, Abe, Acernese et al., 2022, Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data, Physical Review D, 106, 062002, arXiv:2201.10104, DOI: 10.1103/PhysRevD.106.062002
  31. Berg, James, King et al., 2022, The COS Legacy Archive Spectroscopy Survey (CLASSY) Treasury Atlas, The Astrophysical Journal Supplement Series, 261, 31, arXiv:2203.07357, DOI: 10.3847/1538-4365/ac6c03
  32. Abbott, Abbott, Acernese et al., 2022, Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO's and Advanced Virgo's Third Observing Run, Physical Review Letters, 129, 061104, arXiv:2109.12197, DOI: 10.1103/PhysRevLett.129.061104
  33. Tian, Anderson, Hancock et al., 2022, High time resolution search for prompt radio emission from the long GRB 210419A with the Murchison Widefield Array, Monthly Notices of the Royal Astronomical Society, 514, 2756, arXiv:2205.13263, DOI: 10.1093/mnras/stac1483
  34. Hurley-Walker, Galvin, Duchesne et al., 2022, GaLactic and Extragalactic All-sky Murchison Widefield Array survey eXtended (GLEAM-X) I: Survey description and initial data release, Publications of the Astronomical Society of Australia, 39, e035, arXiv:2204.12762, DOI: 10.1017/pasa.2022.17
  35. Abbott, Abe, Acernese et al., 2022, Searches for Gravitational Waves from Known Pulsars at Two Harmonics in the Second and Third LIGO-Virgo Observing Runs, The Astrophysical Journal, 935, 1, arXiv:2111.13106, DOI: 10.3847/1538-4357/ac6acf
  36. Abbott, Abe, Acernese et al., 2022, Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO-Virgo data, Physical Review D, 106, 042003, arXiv:2204.04523, DOI: 10.1103/PhysRevD.106.042003
  37. Xu, Henry, Heckman et al., 2022, Tracing Lyα and LyC Escape in Galaxies with Mg II Emission, The Astrophysical Journal, 933, 202, arXiv:2205.11317, DOI: 10.3847/1538-4357/ac7225
  38. McSweeney, Bhat, Swainston et al., 2022, Independent Discovery of a Nulling Pulsar with Unusual Subpulse Drifting Properties with the Murchison Widefield Array, The Astrophysical Journal, 933, 210, arXiv:2206.00805, DOI: 10.3847/1538-4357/ac75bc
  39. Abbott, Abe, Acernese et al., 2022, First joint observation by the underground gravitational-wave detector KAGRA with GEO 600, Progress of Theoretical and Experimental Physics, 2022, 063F01, arXiv:2203.01270, DOI: 10.1093/ptep/ptac073
  40. Abbott, Abbott, Acernese et al., 2022, Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run, The Astrophysical Journal, 932, 133, arXiv:2112.10990, DOI: 10.3847/1538-4357/ac6ad0
  41. Matthee, Naidu, Pezzulli et al., 2022, (Re)Solving reionization with Lyα: how bright Lyα Emitters account for the z ≈ 2-8 cosmic ionizing background, Monthly Notices of the Royal Astronomical Society, 512, 5960, arXiv:2110.11967, DOI: 10.1093/mnras/stac801
  42. Johnson, Vigeland, Siemens, and Taylor, 2022, Gravitational-wave Statistics for Pulsar Timing Arrays: Examining Bias from Using a Finite Number of Pulsars, The Astrophysical Journal, 932, 105, arXiv:2201.10657, DOI: 10.3847/1538-4357/ac6f5e
  43. Ho, Margalit, Bremer et al., 2022, Luminous Millimeter, Radio, and X-Ray Emission from ZTF 20acigmel (AT 2020xnd), The Astrophysical Journal, 932, 116, arXiv:2110.05490, DOI: 10.3847/1538-4357/ac4e97
  44. Sadiq, Dent, and Wysocki, 2022, Flexible and fast estimation of binary merger population distributions with an adaptive kernel density estimator, Physical Review D, 105, 123014, arXiv:2112.12659, DOI: 10.1103/PhysRevD.105.123014
  45. Ahumada, Anand, Coughlin et al., 2022, In Search of Short Gamma-Ray Burst Optical Counterparts with the Zwicky Transient Facility, The Astrophysical Journal, 932, 40, arXiv:2203.11787, DOI: 10.3847/1538-4357/ac6c29
  46. Gürkan, Prandoni, O'Brien et al., 2022, Deep ASKAP EMU Survey of the GAMA23 field: properties of radio sources, Monthly Notices of the Royal Astronomical Society, 512, 6104, arXiv:2203.14727, DOI: 10.1093/mnras/stac880
  47. Abbott, Abbott, Acernese et al., 2022, All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO's and Advanced Virgo's first three observing runs, Physical Review D, 105, 122001, arXiv:2110.09834, DOI: 10.1103/PhysRevD.105.122001
  48. Lee, Morisaki, and Tagoshi, 2022, Mass-spin reparametrization for a rapid parameter estimation of inspiral gravitational-wave signals, Physical Review D, 105, 124057, arXiv:2203.05216, DOI: 10.1103/PhysRevD.105.124057
  49. Abbott, Abe, Acernese et al., 2022, All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data, Physical Review D, 105, 102001, arXiv:2111.15507, DOI: 10.1103/PhysRevD.105.102001
  50. Tsutsui, Nishizawa, and Morisaki, 2022, Early warning of precessing neutron-star black hole binary mergers with the near-future gravitational-wave detectors, Monthly Notices of the Royal Astronomical Society, 512, 3878, arXiv:2107.12531, DOI: 10.1093/mnras/stac715
  51. Delfavero, O'Shaughnessy, Wysocki, and Yelikar, 2022, Compressed Parametric and Non-Parametric Approximations to the Gravitational Wave Likelihood, arXiv e-prints, arXiv:2205.14154, arXiv:2205.14154, DOI: 10.48550/arXiv.2205.14154
  52. Wang, Murphy, Kaplan et al., 2022, Discovery of PSR J0523-7125 as a Circularly Polarized Variable Radio Source in the Large Magellanic Cloud, The Astrophysical Journal, 930, 38, arXiv:2205.00622, DOI: 10.3847/1538-4357/ac61dc
  53. Lamberts, Puchwein, Pfrommer et al., 2022, Constraining blazar heating with the 2 ≲ z ≲ 3 Lyman-α forest, Monthly Notices of the Royal Astronomical Society, 512, 3045, arXiv:2201.13175, DOI: 10.1093/mnras/stac553
  54. Pizzati, Sachdev, Gupta, and Sathyaprakash, 2022, Toward inference of overlapping gravitational-wave signals, Physical Review D, 105, 104016, arXiv:2102.07692, DOI: 10.1103/PhysRevD.105.104016
  55. Abbott, Abbott, Acernese et al., 2022, Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants, Physical Review D, 105, 082005, arXiv:2111.15116, DOI: 10.1103/PhysRevD.105.082005
  56. Abbott, Abbott, Acernese et al., 2022, Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b, The Astrophysical Journal, 928, 186, arXiv:2111.03608, DOI: 10.3847/1538-4357/ac532b
  57. Takeda, Morisaki, and Nishizawa, 2022, Search for scalar-tensor mixed polarization modes of gravitational waves, Physical Review D, 105, 084019, arXiv:2105.00253, DOI: 10.1103/PhysRevD.105.084019
  58. Piotrzkowski, Baylor, and Hernandez, 2022, A joint ranking statistic for multi-messenger astronomical searches with gravitational waves, Classical and Quantum Gravity, 39, 085010, arXiv:2111.12814, DOI: 10.1088/1361-6382/ac5c00
  59. Chakrabarti, Stevens, Wright et al., 2022, Eclipse Timing the Milky Way's Gravitational Potential, The Astrophysical Journal, 928, L17, arXiv:2112.08231, DOI: 10.3847/2041-8213/ac5c43
  60. Antoniadis, Arzoumanian, Babak et al., 2022, The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background, Monthly Notices of the Royal Astronomical Society, 510, 4873, arXiv:2201.03980, DOI: 10.1093/mnras/stab3418
  61. Abbott, Abbott, Acernese et al., 2022, Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run, Physical Review D, 105, 063030, arXiv:2105.13085, DOI: 10.1103/PhysRevD.105.063030
  62. Abbott, Abbott, Acernese et al., 2022, Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo, Astronomy and Astrophysics, 659, A84, arXiv:2105.15120, DOI: 10.1051/0004-6361/202141452
  63. Naidu, Matthee, Oesch et al., 2022, The synchrony of production and escape: half the bright Lyα emitters at z ≈ 2 have Lyman continuum escape fractions ≈50 per cent, Monthly Notices of the Royal Astronomical Society, 510, 4582, arXiv:2110.11961, DOI: 10.1093/mnras/stab3601
  64. Kasliwal, Kasen, Lau et al., 2022, Spitzer mid-infrared detections of neutron star merger GW170817 suggests synthesis of the heaviest elements, Monthly Notices of the Royal Astronomical Society, 510, L7, arXiv:1812.08708, DOI: 10.1093/mnrasl/slz007
  65. Tian, Anderson, Hancock et al., 2022, Early-time searches for coherent radio emission from short GRBs with the Murchison Widefield Array, Publications of the Astronomical Society of Australia, 39, e003, arXiv:2111.14391, DOI: 10.1017/pasa.2021.58
  66. Mohite, Rajkumar, Anand et al., 2022, Inferring Kilonova Population Properties with a Hierarchical Bayesian Framework. I. Nondetection Methodology and Single-event Analyses, The Astrophysical Journal, 925, 58, arXiv:2107.07129, DOI: 10.3847/1538-4357/ac3981
  67. Abbott, Abbott, Acernese et al., 2022, Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data, Physical Review D, 105, 022002, arXiv:2109.09255, DOI: 10.1103/PhysRevD.105.022002
  68. Abbott, Abbott, Abbott et al., 2021, Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218), The Astrophysical Journal, 923, 279, DOI: 10.3847/1538-4357/ac4267
  69. Abbott, Abbott, Acernese et al., 2021, All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run, Physical Review D, 104, 122004, arXiv:2107.03701, DOI: 10.1103/PhysRevD.104.122004
  70. Arzoumanian, Baker, Blumer et al., 2021, Searching for Gravitational Waves from Cosmological Phase Transitions with the NANOGrav 12.5-Year Dataset, Physical Review Letters, 127, 251302, arXiv:2104.13930, DOI: 10.1103/PhysRevLett.127.251302
  71. Arzoumanian, Baker, Blumer et al., 2021, The NANOGrav 12.5-year Data Set: Search for Non-Einsteinian Polarization Modes in the Gravitational-wave Background, The Astrophysical Journal, 923, L22, arXiv:2109.14706, DOI: 10.3847/2041-8213/ac401c
  72. Citro, Erb, Pettini et al., 2021, SDSS J1059+4251, a Highly Magnified z 2.8 Star-forming Galaxy: ESI Observations of the Rest-frame UV Spectrum, The Astrophysical Journal, 922, 187, arXiv:2109.09748, DOI: 10.3847/1538-4357/ac24a2
  73. Berg, Chisholm, Erb et al., 2021, Characterizing Extreme Emission-line Galaxies. I. A Four-zone Ionization Model for Very High-ionization Emission, The Astrophysical Journal, 922, 170, arXiv:2105.12765, DOI: 10.3847/1538-4357/ac141b
  74. Ashton, Ackley, Hernandez, and Piotrzkowski, 2021, Current observations are insufficient to confidently associate the binary black hole merger GW190521 with AGN J124942.3 + 344929, Classical and Quantum Gravity, 38, 235004, arXiv:2009.12346, DOI: 10.1088/1361-6382/ac33bb
  75. Abbott, Abbott, Abraham et al., 2021, Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO-Virgo's Third Observing Run, The Astrophysical Journal, 923, 14, arXiv:2105.06384, DOI: 10.3847/1538-4357/ac23db
  76. Abbott, Abbott, Abraham et al., 2021, Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo, The Astrophysical Journal, 921, 80, arXiv:2105.11641, DOI: 10.3847/1538-4357/ac17ea
  77. Liu and Vigeland, 2021, Multi-messenger Approaches to Supermassive Black Hole Binary Detection and Parameter Estimation: Implications for Nanohertz Gravitational Wave Searches with Pulsar Timing Arrays, The Astrophysical Journal, 921, 178, arXiv:2105.08087, DOI: 10.3847/1538-4357/ac1da9
  78. Abbott, Abbott, Abraham et al., 2021, Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537-6910, The Astrophysical Journal, 922, 71, arXiv:2104.14417, DOI: 10.3847/1538-4357/ac0d52
  79. Agazie, Mingyar, McLaughlin et al., 2021, The Green Bank Northern Celestial Cap Pulsar Survey. VI. Discovery and Timing of PSR J1759+5036: A Double Neutron Star Binary Pulsar, The Astrophysical Journal, 922, 35, arXiv:2102.10214, DOI: 10.3847/1538-4357/ac142b
  80. Abbott, Abbott, Acernese et al., 2021, All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run, Physical Review D, 104, 102001, arXiv:2107.13796, DOI: 10.1103/PhysRevD.104.102001
  81. Chen, Steidel, Erb et al., 2021, The KBSS-KCWI survey: the connection between extended Ly α haloes and galaxy azimuthal angle at z 2-3, Monthly Notices of the Royal Astronomical Society, 508, 19, arXiv:2104.10173, DOI: 10.1093/mnras/stab2383
  82. Abbott, Abbott, Abraham et al., 2021, All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data, Physical Review D, 104, 082004, arXiv:2107.00600, DOI: 10.1103/PhysRevD.104.082004
  83. Palit, Anumarlapudi, and Bhalerao, 2021, Revisiting the Earth's atmospheric scattering of X-ray/γ-rays and its effect on space observation: Implication for GRB spectral analysis, Journal of Astrophysics and Astronomy, 42, 69, DOI: 10.1007/s12036-021-09759-7
  84. Ho, Zhao, Heinke et al., 2021, X-ray bounds on cooling, composition, and magnetic field of the Cassiopeia A neutron star and young central compact objects, Monthly Notices of the Royal Astronomical Society, 506, 5015, arXiv:2107.08060, DOI: 10.1093/mnras/stab2081
  85. Wang, Kaplan, Murphy et al., 2021, Discovery of ASKAP J173608.2-321635 as a Highly Polarized Transient Point Source with the Australian SKA Pathfinder, The Astrophysical Journal, 920, 45, arXiv:2109.00652, DOI: 10.3847/1538-4357/ac2360
  86. Ghosh, Liu, Creighton et al., 2021, Rapid model comparison of equations of state from gravitational wave observation of binary neutron star coalescences, Physical Review D, 104, 083003, arXiv:2104.08681, DOI: 10.1103/PhysRevD.104.083003
  87. Guo, Freire, Guillemot et al., 2021, PSR J2222−0137. I. Improved physical parameters for the system, Astronomy and Astrophysics, 654, A16, arXiv:2107.09474, DOI: 10.1051/0004-6361/202141450
  88. Murphy, Kaplan, Stewart et al., 2021, The ASKAP Variables and Slow Transients (VAST) Pilot Survey, Publications of the Astronomical Society of Australia, 38, e054, arXiv:2108.06039, DOI: 10.1017/pasa.2021.44
  89. Andreoni, Coughlin, Kool et al., 2021, Fast-transient Searches in Real Time with ZTFReST: Identification of Three Optically Discovered Gamma-Ray Burst Afterglows and New Constraints on the Kilonova Rate, The Astrophysical Journal, 918, 63, arXiv:2104.06352, DOI: 10.3847/1538-4357/ac0bc7
  90. Aasi, Abbott, Abbott et al., 2021, Erratum: "Searches for Continuous Gravitational Waves from Nine Young Supernova Remnants" (2015, ApJ, 813, 39), The Astrophysical Journal, 918, 90, DOI: 10.3847/1538-4357/ac1f2d
  91. Abbott, Abbott, Abbott et al., 2021, Erratum: "Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO" (2019, ApJ, 875, 122), The Astrophysical Journal, 918, 91, DOI: 10.3847/1538-4357/ac1f2c
  92. Chauhan, Miller-Jones, Anderson et al., 2021, A broadband radio view of transient jet ejecta in the black hole candidate X-ray binary MAXI J1535-571, Publications of the Astronomical Society of Australia, 38, e045, arXiv:2107.13019, DOI: 10.1017/pasa.2021.38
  93. Tsutsui, Nishizawa, and Morisaki, 2021, Early warning of precessing compact binary merger with third-generation gravitational-wave detectors, Physical Review D, 104, 064013, arXiv:2011.06130, DOI: 10.1103/PhysRevD.104.064013
  94. Nagano, Nakatsuka, Morisaki et al., 2021, Axion dark matter search using arm cavity transmitted beams of gravitational wave detectors, Physical Review D, 104, 062008, arXiv:2106.06800, DOI: 10.1103/PhysRevD.104.062008
  95. Smith, Borhanian, Sathyaprakash et al., 2021, Bayesian Inference for Gravitational Waves from Binary Neutron Star Mergers in Third Generation Observatories, Physical Review Letters, 127, 081102, arXiv:2103.12274, DOI: 10.1103/PhysRevLett.127.081102
  96. McGrath and Creighton, 2021, Fresnel models for gravitational wave effects on pulsar timing, Monthly Notices of the Royal Astronomical Society, 505, 4531, arXiv:2011.09561, DOI: 10.1093/mnras/stab1417
  97. Turner, McLaughlin, Cordes et al., 2021, The NANOGrav 12.5 Year Data Set: Monitoring Interstellar Scattering Delays, The Astrophysical Journal, 917, 10, arXiv:2012.09884, DOI: 10.3847/1538-4357/abfafe
  98. Dobie, Murphy, Kaplan et al., 2021, Radio afterglows from compact binary coalescences: prospects for next-generation telescopes, Monthly Notices of the Royal Astronomical Society, 505, 2647, arXiv:2105.08933, DOI: 10.1093/mnras/stab1468
  99. White, Bauer, Baumgartner et al., 2021, The Gamow Explorer: a Gamma-Ray Burst Observatory to study the high redshift universe and enable multi-messenger astrophysics, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXII, 11821, 1182109, arXiv:2111.06497, DOI: 10.1117/12.2599293
  100. Morisaki, 2021, Accelerating parameter estimation of gravitational waves from compact binary coalescence using adaptive frequency resolutions, Physical Review D, 104, 044062, arXiv:2104.07813, DOI: 10.1103/PhysRevD.104.044062
  101. The LIGO Scientific Collaboration, the Virgo Collaboration, Abbott et al., 2021, GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, arXiv e-prints, arXiv:2108.01045, arXiv:2108.01045, DOI: 10.48550/arXiv.2108.01045
  102. Li, Chang, Levin, Matzner, and Armitage, 2021, Erratum: Simulation of a compact object with outflows moving through a gaseous background, Monthly Notices of the Royal Astronomical Society, 504, 3166, DOI: 10.1093/mnras/stab1180
  103. Fonseca, Cromartie, Pennucci et al., 2021, Refined Mass and Geometric Measurements of the High-mass PSR J0740+6620, The Astrophysical Journal, 915, L12, arXiv:2104.00880, DOI: 10.3847/2041-8213/ac03b8
  104. Jones, McLaughlin, Roy et al., 2021, Evaluating Low-frequency Pulsar Observations to Monitor Dispersion with the Giant Metrewave Radio Telescope, The Astrophysical Journal, 915, 15, arXiv:2009.08409, DOI: 10.3847/1538-4357/abfdc5
  105. Abbott, Abbott, Abraham et al., 2021, Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run, Physical Review D, 104, 022004, arXiv:2101.12130, DOI: 10.1103/PhysRevD.104.022004
  106. Abbott, Abbott, Abraham et al., 2021, Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3a, The Astrophysical Journal, 915, 86, arXiv:2010.14550, DOI: 10.3847/1538-4357/abee15
  107. Abbott, Abbott, Abraham et al., 2021, Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs, Physical Review D, 104, 022005, arXiv:2103.08520, DOI: 10.1103/PhysRevD.104.022005
  108. Abbott, Abbott, Abraham et al., 2021, Observation of Gravitational Waves from Two Neutron Star-Black Hole Coalescences, The Astrophysical Journal, 915, L5, arXiv:2106.15163, DOI: 10.3847/2041-8213/ac082e
  109. Balasubramanian, Corsi, Mooley et al., 2021, Continued Radio Observations of GW170817 3.5 yr Post-merger, The Astrophysical Journal, 914, L20, arXiv:2103.04821, DOI: 10.3847/2041-8213/abfd38
  110. Abbott, Abbott, Abraham et al., 2021, Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910, The Astrophysical Journal, 913, L27, arXiv:2012.12926, DOI: 10.3847/2041-8213/abffcd
  111. Abbott, Abbott, Abraham et al., 2021, Constraints on Cosmic Strings Using Data from the Third Advanced LIGO-Virgo Observing Run, Physical Review Letters, 126, 241102, arXiv:2101.12248, DOI: 10.1103/PhysRevLett.126.241102
  112. Arzoumanian, Baker, Brazier et al., 2021, The NANOGrav 11 yr Data Set: Limits on Supermassive Black Hole Binaries in Galaxies within 500 Mpc, The Astrophysical Journal, 914, 121, arXiv:2101.02716, DOI: 10.3847/1538-4357/abfcd3
  113. Cannon, Caudill, Chan et al., 2021, GstLAL: A software framework for gravitational wave discovery, SoftwareX, 14, 100680, arXiv:2010.05082, DOI: 10.1016/j.softx.2021.100680
  114. Abbott, Abbott, Abraham et al., 2021, Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog, Physical Review D, 103, 122002, arXiv:2010.14529, DOI: 10.1103/PhysRevD.103.122002
  115. Akutsu, Ando, Arai et al., 2021, Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer, Progress of Theoretical and Experimental Physics, 2021, 05A102, arXiv:2009.09305, DOI: 10.1093/ptep/ptab018
  116. Leung, Murphy, Ghirlanda et al., 2021, A search for radio afterglows from gamma-ray bursts with the Australian Square Kilometre Array Pathfinder, Monthly Notices of the Royal Astronomical Society, 503, 1847, arXiv:2102.01948, DOI: 10.1093/mnras/stab326
  117. Akutsu, Ando, Arai et al., 2021, Overview of KAGRA: Detector design and construction history, Progress of Theoretical and Experimental Physics, 2021, 05A101, arXiv:2005.05574, DOI: 10.1093/ptep/ptaa125
  118. Prusinski, Erb, and Martin, 2021, Connecting Galactic Outflows and Star Formation: Inferences from Hα Maps and Absorption-line Spectroscopy at 1 ≲ z ≲ 1.5, The Astronomical Journal, 161, 212, arXiv:2102.10187, DOI: 10.3847/1538-3881/abe85b
  119. Lundgren, Creech, Brammer et al., 2021, The Geometry of Cold, Metal-enriched Gas around Galaxies at z ∼ 1.2, The Astrophysical Journal, 913, 50, arXiv:2102.10117, DOI: 10.3847/1538-4357/abef6a
  120. Abbott, Abbott, Abraham et al., 2021, Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog, The Astrophysical Journal, 913, L7, arXiv:2010.14533, DOI: 10.3847/2041-8213/abe949
  121. Abbott, Abbott, Abbott et al., 2021, VizieR Online Data Catalog: Search for GW signals associated with GRBs (Abbott+, 2019), VizieR Online Data Catalog, J/ApJ/886/75, DOI:
  122. Pol, Taylor, Kelley et al., 2021, Astrophysics Milestones for Pulsar Timing Array Gravitational-wave Detection, The Astrophysical Journal, 911, L34, arXiv:2010.11950, DOI: 10.3847/2041-8213/abf2c9
  123. Wang, Tuntsov, Murphy et al., 2021, ASKAP observations of multiple rapid scintillators reveal a degrees-long plasma filament, Monthly Notices of the Royal Astronomical Society, 502, 3294, arXiv:2101.06048, DOI: 10.1093/mnras/stab139
  124. Pritchard, Murphy, Zic et al., 2021, A circular polarization survey for radio stars with the Australian SKA Pathfinder, Monthly Notices of the Royal Astronomical Society, 502, 5438, arXiv:2102.01801, DOI: 10.1093/mnras/stab299
  125. Mukherjee, Caudill, Magee et al., 2021, Template bank for spinning compact binary mergers in the second observation run of Advanced LIGO and the first observation run of Advanced Virgo, Physical Review D, 103, 084047, arXiv:1812.05121, DOI: 10.1103/PhysRevD.103.084047
  126. Chen, Steidel, Hummels et al., 2021, Erratum: The Keck Baryonic Structure Survey: using foreground/background galaxy pairs to trace the structure and kinematics of circumgalactic neutral hydrogen at z ∼ 2, Monthly Notices of the Royal Astronomical Society, 502, 1702, DOI: 10.1093/mnras/stab023
  127. Abbott, Abbott, Abraham et al., 2021, GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run, Physical Review X, 11, 021053, arXiv:2010.14527, DOI: 10.1103/PhysRevX.11.021053
  128. Takeda, Morisaki, and Nishizawa, 2021, Pure polarization test of GW170814 and GW170817 using waveforms consistent with modified theories of gravity, Physical Review D, 103, 064037, arXiv:2010.14538, DOI: 10.1103/PhysRevD.103.064037
  129. Morisaki, Fujita, Michimura, Nakatsuka, and Obata, 2021, Improved sensitivity of interferometric gravitational-wave detectors to ultralight vector dark matter from the finite light-traveling time, Physical Review D, 103, L051702, arXiv:2011.03589, DOI: 10.1103/PhysRevD.103.L051702
  130. Abbott, Abbott, Abraham et al., 2021, All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems, Physical Review D, 103, 064017, arXiv:2012.12128, DOI: 10.1103/PhysRevD.103.064017
  131. Chen, Holz, Miller et al., 2021, Distance measures in gravitational-wave astrophysics and cosmology, Classical and Quantum Gravity, 38, 055010, arXiv:1709.08079, DOI: 10.1088/1361-6382/abd594
  132. Rybak, da Cunha, Groves et al., 2021, Ultrafaint [C II] Emission in a Redshift = 2 Gravitationally Lensed Metal-poor Dwarf Galaxy, The Astrophysical Journal, 909, 130, arXiv:2101.00841, DOI: 10.3847/1538-4357/abd946
  133. Sett, Breton, Clark, van Kerkwijk, and Kaplan, 2021, A search for radio pulsars in five nearby supernova remnants, Astronomy and Astrophysics, 647, A183, arXiv:2101.12486, DOI: 10.1051/0004-6361/201936108
  134. Abbott, Abbott, Abbott et al., 2021, A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo, The Astrophysical Journal, 909, 218, arXiv:1908.06060, DOI: 10.3847/1538-4357/abdcb7
  135. Spaulding and Chang, 2021, The effect of impact parameter on tidal disruption events, Monthly Notices of the Royal Astronomical Society, 501, 1748, arXiv:2010.07318, DOI: 10.1093/mnras/staa3627
  136. Quici, Hurley-Walker, Seymour et al., 2021, Remnant radio galaxies discovered in a multi-frequency survey, Publications of the Astronomical Society of Australia, 38, e008, arXiv:2101.09761, DOI: 10.1017/pasa.2020.49
  137. Chakrabarti, Chang, Lam, Vigeland, and Quillen, 2021, A Measurement of the Galactic Plane Mass Density from Binary Pulsar Accelerations, The Astrophysical Journal, 907, L26, arXiv:2010.04018, DOI: 10.3847/2041-8213/abd635
  138. Burns, Svinkin, Hurley et al., 2021, Identification of a Local Sample of Gamma-Ray Bursts Consistent with a Magnetar Giant Flare Origin, The Astrophysical Journal, 907, L28, arXiv:2101.05144, DOI: 10.3847/2041-8213/abd8c8
  139. Liu, Magaña Hernandez, and Creighton, 2021, Identifying Strong Gravitational-wave Lensing during the Second Observing Run of Advanced LIGO and Advanced Virgo, The Astrophysical Journal, 908, 97, arXiv:2009.06539, DOI: 10.3847/1538-4357/abd7eb
  140. Norris, Intema, Kapińska et al., 2021, Unexpected circular radio objects at high Galactic latitude, Publications of the Astronomical Society of Australia, 38, e003, arXiv:2006.14805, DOI: 10.1017/pasa.2020.52
  141. Abbott, Abbott, Abraham et al., 2021, Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo, SoftwareX, 13, 100658, arXiv:1912.11716, DOI: 10.1016/j.softx.2021.100658
  142. Alam, Arzoumanian, Baker et al., 2021, The NANOGrav 12.5 yr Data Set: Wideband Timing of 47 Millisecond Pulsars, The Astrophysical Journal Supplement Series, 252, 5, arXiv:2005.06495, DOI: 10.3847/1538-4365/abc6a1
  143. Alam, Arzoumanian, Baker et al., 2021, The NANOGrav 12.5 yr Data Set: Observations and Narrowband Timing of 47 Millisecond Pulsars, The Astrophysical Journal Supplement Series, 252, 4, arXiv:2005.06490, DOI: 10.3847/1538-4365/abc6a0
  144. Chen, Steidel, Hummels et al., 2020, The Keck Baryonic Structure Survey: using foreground/background galaxy pairs to trace the structure and kinematics of circumgalactic neutral hydrogen at z 2, Monthly Notices of the Royal Astronomical Society, 499, 1721, arXiv:2006.13236, DOI: 10.1093/mnras/staa2808
  145. Burdge, Coughlin, Fuller et al., 2020, An 8.8 Minute Orbital Period Eclipsing Detached Double White Dwarf Binary, The Astrophysical Journal, 905, L7, arXiv:2010.03555, DOI: 10.3847/2041-8213/abca91
  146. Sachdev, Magee, Hanna et al., 2020, An Early-warning System for Electromagnetic Follow-up of Gravitational-wave Events, The Astrophysical Journal, 905, L25, arXiv:2008.04288, DOI: 10.3847/2041-8213/abc753
  147. Parent, Chawla, Kaspi et al., 2020, First Discovery of a Fast Radio Burst at 350 MHz by the GBNCC Survey, The Astrophysical Journal, 904, 92, arXiv:2008.04217, DOI: 10.3847/1538-4357/abbdf6
  148. Andreoni, Kool, Sagués Carracedo et al., 2020, Constraining the Kilonova Rate with Zwicky Transient Facility Searches Independent of Gravitational Wave and Short Gamma-Ray Burst Triggers, The Astrophysical Journal, 904, 155, arXiv:2008.00008, DOI: 10.3847/1538-4357/abbf4c
  149. Burdge, Prince, Fuller et al., 2020, A Systematic Search of Zwicky Transient Facility Data for Ultracompact Binary LISA-detectable Gravitational-wave Sources, The Astrophysical Journal, 905, 32, arXiv:2009.02567, DOI: 10.3847/1538-4357/abc261
  150. Kasliwal, Anand, Ahumada et al., 2020, Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3, The Astrophysical Journal, 905, 145, arXiv:2006.11306, DOI: 10.3847/1538-4357/abc335
  151. Zic, Murphy, Lynch et al., 2020, A Flare-type IV Burst Event from Proxima Centauri and Implications for Space Weather, The Astrophysical Journal, 905, 23, arXiv:2012.04642, DOI: 10.3847/1538-4357/abca90
  152. Wang, Murphy, Kaplan, Bannister, and Dobie, 2020, The capability of the Australian Square Kilometre Array Pathfinder to detect prompt radio bursts from neutron star mergers, Publications of the Astronomical Society of Australia, 37, e051, arXiv:2010.09949, DOI: 10.1017/pasa.2020.42
  153. Arzoumanian, Baker, Blumer et al., 2020, The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background, The Astrophysical Journal, 905, L34, arXiv:2009.04496, DOI: 10.3847/2041-8213/abd401
  154. Abbott, Abbott, Abbott et al., 2020, VizieR Online Data Catalog: 2015-2017 LIGO obs. analysis for 221 pulsars (Abbott+, 2019), VizieR Online Data Catalog, J/ApJ/879/10, DOI:
  155. Messick, Sachdev, Cannon et al., 2020, Automating the Inclusion of Subthreshold Signal-to-Noise Ratios for Rapid Gravitational-Wave Localization, arXiv e-prints, arXiv:2011.02457, arXiv:2011.02457, DOI: 10.48550/arXiv.2011.02457
  156. McConnell, Hale, Lenc et al., 2020, The Rapid ASKAP Continuum Survey I: Design and first results, Publications of the Astronomical Society of Australia, 37, e048, arXiv:2012.00747, DOI: 10.1017/pasa.2020.41
  157. Godwin, Essick, Hanna et al., 2020, Incorporation of Statistical Data Quality Information into the GstLAL Search Analysis, arXiv e-prints, arXiv:2010.15282, arXiv:2010.15282, DOI: 10.48550/arXiv.2010.15282
  158. Abbott, Abbott, Abraham et al., 2020, Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars, The Astrophysical Journal, 902, L21, arXiv:2007.14251, DOI: 10.3847/2041-8213/abb655
  159. Bouwhuis, Bannister, Macquart et al., 2020, A search for fast-radio-burst-like emission from Fermi gamma-ray bursts, Monthly Notices of the Royal Astronomical Society, 497, 125, arXiv:2006.14906, DOI: 10.1093/mnras/staa1889
  160. Abbott, Abbott, Abraham et al., 2020, Properties and Astrophysical Implications of the 150 M<SUB>⊙</SUB> Binary Black Hole Merger GW190521, The Astrophysical Journal, 900, L13, arXiv:2009.01190, DOI: 10.3847/2041-8213/aba493
  161. Arzoumanian, Baker, Brazier et al., 2020, Multimessenger Gravitational-wave Searches with Pulsar Timing Arrays: Application to 3C 66B Using the NANOGrav 11-year Data Set, The Astrophysical Journal, 900, 102, arXiv:2005.07123, DOI: 10.3847/1538-4357/ababa1
  162. Abbott, Abbott, Abraham et al., 2020, GW190521: A Binary Black Hole Merger with a Total Mass of 150 M<SUB>⊙</SUB>, Physical Review Letters, 125, 101102, arXiv:2009.01075, DOI: 10.1103/PhysRevLett.125.101102
  163. Abbott, Abbott, Abbott et al., 2020, Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA, Living Reviews in Relativity, 23, 3, DOI: 10.1007/s41114-020-00026-9
  164. Abbott, Abbott, Abbott et al., 2020, Erratum: "Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015-2017 LIGO Data" (2019, ApJ, 879, 10), The Astrophysical Journal, 899, 170, DOI: 10.3847/1538-4357/abaabb
  165. Abbott, Abbott, Abraham et al., 2020, GW190412: Observation of a binary-black-hole coalescence with asymmetric masses, Physical Review D, 102, 043015, arXiv:2004.08342, DOI: 10.1103/PhysRevD.102.043015
  166. Ngeow, Belecki, Burruss et al., 2020, A Search for Extra-tidal RR Lyrae in Globular Clusters NGC 5024 and NGC 5053, The Astronomical Journal, 160, 31, arXiv:2005.06088, DOI: 10.3847/1538-3881/ab930b
  167. Liu, He, Mikulski et al., 2020, Measuring the speed of gravitational waves from the first and second observing run of Advanced LIGO and Advanced Virgo, Physical Review D, 102, 024028, arXiv:2005.03121, DOI: 10.1103/PhysRevD.102.024028
  168. Prust, 2020, Moving and reactive boundary conditions in moving-mesh hydrodynamics, Monthly Notices of the Royal Astronomical Society, 494, 4616, arXiv:2002.04287, DOI: 10.1093/mnras/staa1031
  169. Andreoni, Lu, Smith et al., 2020, Zwicky Transient Facility Constraints on the Optical Emission from the Nearby Repeating FRB 180916.J0158+65, The Astrophysical Journal, 896, L2, arXiv:2005.06273, DOI: 10.3847/2041-8213/ab94a5
  170. Sokolowski, Jordan, Sleap et al., 2020, Calibration database for the Murchison Widefield Array All-Sky Virtual Observatory, Publications of the Astronomical Society of Australia, 37, e021, arXiv:2005.02041, DOI: 10.1017/pasa.2020.17
  171. Ding, Deller, Freire et al., 2020, Very Long Baseline Astrometry of PSR J1012+5307 and its Implications on Alternative Theories of Gravity, The Astrophysical Journal, 896, 85, arXiv:2004.14668, DOI: 10.3847/1538-4357/ab8f27
  172. Liu, Koss, Blecha et al., 2020, The BAT AGN Spectroscopic Survey. XVIII. Searching for Supermassive Black Hole Binaries in X-Rays, The Astrophysical Journal, 896, 122, arXiv:1912.02837, DOI: 10.3847/1538-4357/ab952d
  173. Abbott, Abbott, Abraham et al., 2020, GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object, The Astrophysical Journal, 896, L44, arXiv:2006.12611, DOI: 10.3847/2041-8213/ab960f
  174. Dobie, Kaplan, Hotokezaka et al., 2020, Constraining properties of neutron star merger outflows with radio observations, Monthly Notices of the Royal Astronomical Society, 494, 2449, arXiv:1910.13662, DOI: 10.1093/mnras/staa789
  175. Mata Sánchez, Istrate, van Kerkwijk, Breton, and Kaplan, 2020, PSR J1012+5307: a millisecond pulsar with an extremely low-mass white dwarf companion, Monthly Notices of the Royal Astronomical Society, 494, 4031, arXiv:2004.02901, DOI: 10.1093/mnras/staa983
  176. Li, Chang, Levin, Matzner, and Armitage, 2020, Simulation of a compact object with outflows moving through a gaseous background, Monthly Notices of the Royal Astronomical Society, 494, 2327, arXiv:1912.06864, DOI: 10.1093/mnras/staa900
  177. Hamburg, Fletcher, Burns et al., 2020, A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs, The Astrophysical Journal, 893, 100, arXiv:2001.00923, DOI: 10.3847/1538-4357/ab7d3e
  178. Tiede, Broderick, Shalaby et al., 2020, Constraints on the Intergalactic Magnetic Field from Bow Ties in the Gamma-Ray Sky, The Astrophysical Journal, 892, 123, arXiv:1702.02586, DOI: 10.3847/1538-4357/ab737e
  179. McEwen, Spiewak, Swiggum et al., 2020, The Green Bank North Celestial Cap Pulsar Survey. V. Pulsar Census and Survey Sensitivity, The Astrophysical Journal, 892, 76, arXiv:1909.11109, DOI: 10.3847/1538-4357/ab75e2
  180. Vallisneri, Taylor, Simon et al., 2020, Modeling the Uncertainties of Solar System Ephemerides for Robust Gravitational-wave Searches with Pulsar-timing Arrays, The Astrophysical Journal, 893, 112, arXiv:2001.00595, DOI: 10.3847/1538-4357/ab7b67
  181. Baral, Ray, Koley, and Majumdar, 2020, Gravitational waves with orbital angular momentum, European Physical Journal C, 80, 326, arXiv:1901.08804, DOI: 10.1140/epjc/s10052-020-7881-2
  182. Abbott, Abbott, Abbott et al., 2020, Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo, Physical Review D, 101, 084002, arXiv:1908.03584, DOI: 10.1103/PhysRevD.101.084002
  183. Lucas, Minniti, Kamble et al., 2020, VVV-WIT-01: highly obscured classical nova or protostellar collision?, Monthly Notices of the Royal Astronomical Society, 492, 4847, arXiv:2001.05536, DOI: 10.1093/mnras/staa155
  184. Kupfer, Bauer, Marsh et al., 2020, The First Ultracompact Roche Lobe-Filling Hot Subdwarf Binary, The Astrophysical Journal, 891, 45, arXiv:2002.01485, DOI: 10.3847/1538-4357/ab72ff
  185. Abbott, Abbott, Abbott et al., 2020, A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals, Classical and Quantum Gravity, 37, 055002, arXiv:1908.11170, DOI: 10.1088/1361-6382/ab685e
  186. Abbott, Abbott, Abbott et al., 2020, GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M<SUB>⊙</SUB>, The Astrophysical Journal, 892, L3, arXiv:2001.01761, DOI: 10.3847/2041-8213/ab75f5
  187. Kapadia, Caudill, Creighton et al., 2020, A self-consistent method to estimate the rate of compact binary coalescences with a Poisson mixture model, Classical and Quantum Gravity, 37, 045007, arXiv:1903.06881, DOI: 10.1088/1361-6382/ab5f2d
  188. Andreoni, Goldstein, Kasliwal et al., 2020, GROWTH on S190814bv: Deep Synoptic Limits on the Optical/Near-infrared Counterpart to a Neutron Star-Black Hole Merger, The Astrophysical Journal, 890, 131, arXiv:1910.13409, DOI: 10.3847/1538-4357/ab6a1b
  189. Abbott, Abbott, Abbott et al., 2020, Model comparison from LIGO-Virgo data on GW170817's binary components and consequences for the merger remnant, Classical and Quantum Gravity, 37, 045006, arXiv:1908.01012, DOI: 10.1088/1361-6382/ab5f7c
  190. Creighton and Crnojevic, 2020, Hubble Space Telescope Imaging of the Faintest Galaxy, Virgo I, American Astronomical Society Meeting Abstracts #235, 235, 168.20, DOI:
  191. Hanna, Caudill, Messick et al., 2020, Fast evaluation of multidetector consistency for real-time gravitational wave searches, Physical Review D, 101, 022003, arXiv:1901.02227, DOI: 10.1103/PhysRevD.101.022003
  192. Cromartie, Fonseca, Ransom et al., 2020, Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar, Nature Astronomy, 4, 72, arXiv:1904.06759, DOI: 10.1038/s41550-019-0880-2

Compiled using ADS Examples and ADS.